Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.162
Filtrar
2.
Haemophilia ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650319

RESUMO

INTRODUCTION: Bleeding severity in severe haemophilic patients, with low thrombin generation (TG) capacity, can vary widely between patients, possibly reflecting differences in tissue factor pathway inhibitor (TFPI) level. AIM: To compare free TFPI (fTFPI) levels in patients with severe haemophilia A (sHA) and severe haemophilia B (sHB) and to investigate in these patients as a whole the relationships between bleeding and TG potential, between TG potential and fTFPI level and between fTFPI level and bleeding tendency. METHODS: Data on bleeding episodes retrospectively recorded during follow-up visits over 5-10 years were collected and used to calculate the annualised joint bleeding rate (AJBR). fTFPI levels and basal TG parameters were determined in platelet-poor plasma (PPP) and platelet-rich plasma (PRP) using calibrated automated tomography (CAT). RESULTS: Mean fTFPI levels did not differ significantly between sHA (n = 34) and sHB (n = 19) patients. Mean values of endogenous thrombin potential (ETP) and thrombin peak (peak) in PPP and PRP were two-fold higher when fTFPI levels < 9.4 versus > 14.3 ng/mL. In patients treated on demand, ETP and peak in PRP were doubled when AJBR was ≤ 4.9 $ \le 4.9$ , AJBR being halved in patients with a low fTFPI level (9.4 ng/mL). In patients on factor prophylaxis, no association was found between TG parameters and either fTFPI level or AJBR. CONCLUSION: In patients treated on demand, bleeding tendency was influenced by fTFPI levels, which in turn affected basal TG potential. In patients on prophylaxis, bleeding tendency is probably determined primarily by the intensity of this treatment.

3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612918

RESUMO

Patients with first-diagnosed atrial fibrillation (FDAF) exhibit major adverse cardiovascular events (MACEs) during follow-up. Preclinical models have demonstrated that thrombo-inflammation mediates adverse cardiac remodeling and atherothrombotic events. We have hypothesized that thrombin activity (FIIa) links coagulation with inflammation and cardiac fibrosis/dysfunction. Surrogate markers of the thrombo-inflammatory response in plasma have not been characterized in FDAF. In this prospective longitudinal study, patients presenting with FDAF (n = 80), and 20 matched controls, were included. FIIa generation and activity in plasma were increased in the patients with early AF compared to the patients with chronic cardiovascular disease without AF (controls; p < 0.0001). This increase was accompanied by elevated biomarkers (ELISA) of platelet and endothelial activation in plasma. Pro-inflammatory peripheral immune cells (TNF-α+ or IL-6+) that expressed FIIa-activated protease-activated receptor 1 (PAR1) (flow cytometry) circulated more frequently in patients with FDAF compared to the controls (p < 0.0001). FIIa activity correlated with cardiac fibrosis (collagen turnover) and cardiac dysfunction (NT-pro ANP/NT-pro BNP) surrogate markers. FIIa activity in plasma was higher in patients with FDAF who experienced MACE. Signaling via FIIa might be a presumed link between the coagulation system (tissue factor-FXa/FIIa-PAR1 axis), inflammation, and pro-fibrotic pathways (thrombo-inflammation) in FDAF.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Estudos Longitudinais , Estudos Prospectivos , Receptor PAR-1 , Biomarcadores , Fibrose
4.
Br J Anaesth ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38594117

RESUMO

BACKGROUND: Andexanet alfa is a Gla-domainless mutant (S195A) factor Xa (GDXa) approved for acute reversal of oral factor Xa inhibitors. Cardiac surgery patients exposed to andexanet before cardiopulmonary bypass often exhibit severe heparin resistance. There is a paucity of data on the effectiveness and optimal dosage of antithrombin use in this setting. The objective of this study was to evaluate the in vitro effect of increased heparin with antithrombin levels on attenuating heparin resistance induced by GDXa. METHODS: Heparinised normal pooled plasma and cardiopulmonary bypass plasma were spiked with GDXa 4 µM. Tissue factor-activated thrombin generation was used to assess heparin reversal effects of GDXa and restoration of anticoagulation with additional heparin with and without antithrombin. Serum thrombin-antithrombin complex, antithrombin activity, and tissue factor pathway inhibitor were also measured in tissue factor-activated, recalcified cardiopulmonary bypass plasma spiked with GDXa. RESULTS: In normal pooled plasma, GDXa-induced heparin reversal was mitigated by maintaining a high heparin concentration (12 U ml-1) and supplementing antithrombin (1.5-4.5 µM) based on peak and velocity of thrombin generation. Heparin reversal by GDXa was also demonstrated in cardiopulmonary bypass plasma, but supplementing both heparin (8 U ml-1) and antithrombin (3 µM) attenuated GDXa-induced changes in peak and velocity of thrombin generation by 72.5% and 72.2%, respectively. High heparin and antithrombin levels attenuated thrombin-antithrombin complex formation in tissue factor-activated, GDXa-spiked cardiopulmonary bypass plasma by 85.7%, but tissue factor pathway inhibitor remained depleted compared with control cardiopulmonary bypass plasma. CONCLUSIONS: Simultaneous supplementation of heparin and antithrombin mitigate GDXa-induced heparin resistance by compensating for the loss of tissue factor pathway inhibitor.

5.
Cancers (Basel) ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610968

RESUMO

Venous thromboembolic events are frequent complications of Glioblastoma Multiforme (GBM) and low-grade gliomas (LGGs). The overexpression of tissue factor (TF) plays an essential role in the local hypercoagulable phenotype that underlies these complications. Our aim was to build an MRI radiomics model for the non-invasive exploration of the hypercoagulable status of LGG/GBM. Radiogenomics data from The Cancer Genome Atlas (TCGA) and REMBRANDT (Repository for molecular BRAin Neoplasia DaTa) cohorts were used. A logistic regression model (Radscore) was built in order to identify the top 20% TF-expressing tumors, considered to be at high thromboembolic risk. The most contributive MRI radiomics features from LGG/GBM linked to high TF were identified in TCGA using Least Absolute Shrinkage and Selection Operator (LASSO) regression. A logistic regression model was built, whose performance was analyzed with ROC in the TCGA/training and REMBRANDT/validation cohorts: AUC = 0.87 [CI95: 0.81-0.94, p < 0.0001] and AUC = 0.78 [CI95: 0.56-1.00, p = 0.02], respectively. In agreement with the key role of the coagulation cascade in gliomas, LGG patients with a high Radscore had lower overall and disease-free survival. The Radscore was linked to the presence of specific genomic alterations, the composition of the tumor coagulome and the tumor immune infiltrate. Our findings suggest that a non-invasive assessment of the hypercoagulable status of LGG/GBM is possible with MRI radiomics.

6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473827

RESUMO

Alternatively spliced tissue factor (asTF) promotes the progression of pancreatic ductal adenocarcinoma (PDAC) by activating ß1-integrins on PDAC cell surfaces. hRabMab1, a first-in-class humanized inhibitory anti-asTF antibody we recently developed, can suppress PDAC primary tumor growth as a single agent. Whether hRabMab1 has the potential to suppress metastases in PDAC is unknown. Following in vivo screening of three asTF-proficient human PDAC cell lines, we chose to make use of KRAS G12V-mutant human PDAC cell line PaCa-44, which yields aggressive primary orthotopic tumors with spontaneous spread to PDAC-relevant anatomical sites, along with concomitant severe leukocytosis. The experimental design featured orthotopic tumors formed by luciferase labeled PaCa-44 cells; administration of hRabMab1 alone or in combination with gemcitabine/paclitaxel (gem/PTX); and the assessment of the treatment outcomes on the primary tumor tissue as well as systemic spread. When administered alone, hRabMab1 exhibited poor penetration of tumor tissue; however, hRabMab1 was abundant in tumor tissue when co-administered with gem/PTX, which resulted in a significant decrease in tumor cell proliferation; leukocyte infiltration; and neovascularization. Gem/PTX alone reduced primary tumor volume, but not metastatic spread; only the combination of hRabMab1 and gem/PTX significantly reduced metastatic spread. RNA-seq analysis of primary tumors showed that the addition of hRabMab1 to gem/PTX enhanced the downregulation of tubulin binding and microtubule motor activity. In the liver, hRabMab1 reduced liver metastasis as a single agent. Only the combination of hRabMab1 and gem/PTX eliminated tumor cell-induced leukocytosis. We here demonstrate for the first time that hRabMab1 may help suppress metastasis in PDAC. hRabMab1's ability to improve the efficacy of chemotherapy is significant and warrants further investigation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Tromboplastina , Gencitabina , Anticorpos Monoclonais Humanizados/uso terapêutico , Leucocitose/tratamento farmacológico , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Desoxicitidina/farmacologia , Paclitaxel/uso terapêutico
7.
Sci Rep ; 14(1): 6419, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494537

RESUMO

Extracellular vesicles (EVs) have crucial roles in hemostasis and coagulation. They sustain coagulation by exposing phosphatidylserine and initiate clotting by surface expression of tissue factor (TF) under inflammatory conditions. As their relevance as biomarkers of coagulopathy is increasingly recognized, there is a need for the sensitive and reliable detection of TF+ EVs, but their flow cytometric analysis is challenging and has yielded controversial findings for TF expression on EVs in the vascular system. We investigated the effect of different fluorochrome-to-protein (F/P) ratios of anti-TF-fluorochrome conjugates on the flow cytometric detection of TF+ EVs from activated monocytes, mesenchymal stem cells (MSCs), and in COVID-19 plasma. Using a FITC-labeled anti-TF antibody (clone VD8), we show that the percentage of TF+ EVs declined with decreasing F/P ratios. TF was detected on 7.6%, 5.4%, and 1.1% of all EVs derived from activated monocytes at F/P ratios of 7.7:1, 6.6:1, and 5.2:1. A similar decline was observed for EVs from MSCs and for EVs in plasma, whereas the detection of TF on cells remained unaffected by different F/P ratios. We provide clear evidence that next to the antibody clone, the F/P ratio affects the flow cytometric detection of TF+ EVs and should be carefully controlled.


Assuntos
Vesículas Extracelulares , Tromboplastina , Tromboplastina/metabolismo , Corantes Fluorescentes/metabolismo , Coagulação Sanguínea , Vesículas Extracelulares/metabolismo
8.
Cardiovasc Diagn Ther ; 14(1): 72-83, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434568

RESUMO

Background: In recent years, a mass of studies have shown that pyroptosis plays an important role in the proliferation of vascular smooth muscle cells (VSMCs). We investigated whether angiotensin II (Ang II) induces the pyroptosis of rat aortic VSMCs and the role of NOD-like receptor family pyrin domain containing 3 (NLRP3) in this process. Additionally, we explored the effect and related mechanism of recombinant tissue factor pathway inhibitor (rTFPI) in Ang II-induced VSMC pyroptosis. Methods: Cultured VSMCs were divided into five groups: control group, Ang II group (1×10-5 mol/L), MCC950 group (NLRP3 inhibitor, 15 nmol/L), Ang II + MCC950 group and Ang II + rTFPI (50 µg/L) group. Cell viability was measured by cell counting kit-8 (CCK8) assays and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Propidium iodide (PI) staining and immunofluorescence were performed to determine the pyroptosis of VSMCs. Changes in VSMC ultrastructure were evaluated through transmission electron microscopy. The expression levels of NLRP3, pro-caspase-1, gasdermin D-N (GSDMD-N), and interleukin-1ß (IL-1ß) were determined by western blot analysis. Results: The cell viability, the positive rate of PI staining, and the expression level of GSDMD detected by immunofluorescence in the Ang II group were higher than that in the control group, whereas they all decreased in Ang II + MCC950 group and Ang II + rTFPI group compared with Ang II group (P<0.05). Electron microscopy analysis revealed less extracellular matrix, increased myofilaments, and decreased endoplasmic reticulum, Golgi complex, and mitochondria in Ang II + rTFPI-treated VSMCs than in Ang II-treated VSMCs. The protein expression levels of the pyroptosis-related molecules NLRP3, pro-caspase-1, GSDMD-N, and IL-1ß in Ang II group showed an increasing trend compared with those in control group (P<0.05); however, these expression levels in Ang II + MCC950 and Ang II + rTFPI groups were significantly lower than those in Ang II group (P<0.05). Conclusions: Ang II may induce pyroptosis in VSMCs by activating NLRP3. rTFPI can inhibit Ang II-induced VSMC pyroptosis. Furthermore, rTFPI might exert this effect by inhibiting the NLRP3 pathway and therefore play an important role in the treatment of vascular remodeling induced by hypertension.

9.
Basic Res Cardiol ; 119(2): 291-307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430261

RESUMO

The coronary perivascular adipose tissue (cPVAT) has been associated to the burden of cardiovascular risk factors and to the underlying vessel atherosclerotic plaque severity. Although the "outside to inside" hypothesis of PVAT-derived-adipokine regulation of vessel function is currently accepted, whether the resident mesenchymal stem cells (ASCs) in PVAT have a regulatory role on the underlying vascular arterial smooth muscle cells (VSMCs) is not known. Here, we investigated the interactions between resident PVAT-ASCs and VSMCs. ASCs were obtained from PVAT overlying the left anterior descending (LAD) coronary artery of hearts removed at heart transplant operations. PVAT was obtained both from patients with non-ischemic and ischemic heart disease as the cause of heart transplant. ASCs were isolated from PVAT, phenotypically characterized by flow cytometry, functionally tested for proliferation, and differentiation. Crosstalk between ASCs and VSMCs was investigated by co-culture studies. ASCs were detected in the adventitia of the LAD-PVAT showing differentiation capacity and angiogenic potential. ASCs obtained from PVAT of non-ischemic and ischemic hearts showed different tissue factor (TF) expression levels, different VSMCs recruitment capacity through the axis ERK1/2-ETS1 signaling and different angiogenic potential. Induced upregulation of TF in ASCs isolated from ischemic PVAT rescued their angiogenic capacity in subcutaneously implanted plugs in mice, whereas silencing TF in ASCs decreased the proangiogenic capacity of non-ischemic ASCs. The results indicate for the first time a novel mechanism of regulation of VSMCs by PVAT-ASCs in angiogenesis, mediated by TF expression in ASCs. Regulation of TF in ASCs may become a therapeutic intervention to increase cardiac protection.


Assuntos
Adipócitos , Tromboplastina , Humanos , Camundongos , Animais , Tromboplastina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Coração , Células-Tronco
10.
Int J Hematol ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311665

RESUMO

Development of thrombosis is closely associated with poor prognosis in cancer patients. Cancer patients often fulfill Virchow's triad of hyper-coagulable state, vascular endothelial injury, and venous stasis. Cancer cells aberrantly express a variety of procoagulant factors, including tissue factor and podoplanin. Chemotherapeutic agents and radiation cause vascular endothelial injury, and reduced daily activity and bed rest for chemotherapy lead to venous stasis. Due to these factors, cancer patients are at high risk of developing thrombosis. Cancer patients are also at high risk of bleeding when they have disseminated intravascular coagulation and/or chemotherapy-induced thrombocytopenia as complications. International societies, such as the American Society of Clinical Oncology and the International Initiative on Thrombosis and Cancer (ITAC), have published clinical guidelines to help physicians better manage cancer-associated thrombosis (CAT). These guidelines recommend use of low molecular weight heparin or direct oral anticoagulants for the prevention of CAT, but unfortunately use of these drugs is not approved in Japan. This gap between Japan and other countries needs to be closed.

11.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391918

RESUMO

BACKGROUND: Cancer-associated thrombosis (CAT) and venous thromboembolism (VTE) are frequent cancer-related complications associated with high mortality; thus, this urges the identification of predictive markers. Immune checkpoint inhibitors (ICIs) used in cancer immunotherapy allow T-cell activation against cancer cells. Retrospective studies showed increased VTE following ICI administration in some patients. Non-small cell lung cancer (NSCLC) patients are at high risk of thrombosis and thus, the adoption of immunotherapy, as a first-line treatment, seems to be associated with coagulation-fibrinolysis derangement. METHODS: We pharmacologically modulated NSCLC cell lines in co-culture with CD8+ T-cells (TCD8+) and myeloid-derived suppressor cells (MDSCs), isolated from healthy blood donors. The effects of ICIs Nivolumab and Ipilimumab on NSCLC cell death were assessed by annexin V and propidium iodide (PI) flow cytometry analysis. The potential procoagulant properties were analyzed by in vitro clotting assays and enzyme-linked immunosorbent assays (ELISAs). The metabolic remodeling induced by the ICIs was explored by 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS: Flow cytometry analysis showed that TCD8+ and ICIs increase cell death in H292 and PC-9 cells but not in A549 cells. Conditioned media from NSCLC cells exposed to TCD8+ and ICI induced in vitro platelet aggregation. In A549, Podoplanin (PDPN) levels increased with Nivolumab. In H292, ICIs increased PDPN levels in the absence of TCD8+. In PC-9, Ipilimumab decreased PDPN levels, this effect being rescued by TCD8+. MDSCs did not interfere with the effect of TCD8+ in the production of TF or PDPN in any NSCLC cell lines. The exometabolome showed a metabolic remodeling in NSCLC cells upon exposure to TCD8+ and ICIs. CONCLUSIONS: This study provides some insights into the interplay of immune cells, ICIs and cancer cells influencing the coagulation status. ICIs are important promoters of coagulation, benefiting from TCD8+ mediation. The exometabolome analysis highlighted the relevance of acetate, pyruvate, glycine, glutamine, valine, leucine and isoleucine as biomarkers. Further investigation is needed to validate this finding in a cohort of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Trombose , Tromboembolia Venosa , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/patologia , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Estudos Retrospectivos
12.
Stem Cell Res Ther ; 15(1): 56, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414067

RESUMO

BACKGROUND: Hyperactive coagulation might cause dangerous complications such as portal vein thrombosis and pulmonary embolism after mesenchymal stem/stromal cell (MSC) therapy. Tissue factor (TF), an initiator of the extrinsic coagulation pathway, has been suggested as a predictor of this process. METHODS: The expression of TF and other pro- and anticoagulant genes was analyzed in xeno- and serum-free manufactured MSCs. Furthermore, culture factors affecting its expression in MSCs were investigated. Finally, coagulation tests of fibrinogen, D-dimer, aPPTs, PTs, and TTs were measured in patient serum after umbilical cord (UC)-MSC infusions to challenge a potential connection between TF expression and MSC-induced coagulant activity.  RESULTS: Xeno- and serum-free cultured adipose tissue and UC-derived MSCs expressed the highest level of TF, followed by those from dental pulp, and the lowest expression was observed in MSCs of bone marrow origin. Environmental factors such as cell density, hypoxia, and inflammation impact TF expression, so in vitro analysis might fail to reflect their in vivo behaviors. MSCs also expressed heterogeneous levels of the coagulant factor COL1A1 and surface phosphatidylserine and anticoagulant factors TFPI and PTGIR. MSCs of diverse origins induced fibrin clots in healthy plasma that were partially suppressed by an anti-TF inhibitory monoclonal antibody. Furthermore, human umbilical vein endothelial cells exhibited coagulant activity in vitro despite their negative expression of TF and COL1A1. Patients receiving intravenous UC-MSC infusion exhibited a transient increase in D-dimer serum concentration, while this remained stable in the group with intrathecal infusion. There was no correlation between TF expression and D-dimer or other coagulation indicators. CONCLUSIONS: The study suggests that TF cannot be used as a solid biomarker to predict MSC-induced hypercoagulation. Local administration, prophylactic intervention with anticoagulation drugs, and monitoring of coagulation indicators are useful to prevent thrombogenic events in patients receiving MSCs. Trial registration NCT05292625. Registered March 23, 2022, retrospectively registered, https://www. CLINICALTRIALS: gov/ct2/show/NCT05292625?term=NCT05292625&draw=2&rank=1 . NCT04919135. Registered June 9, 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT04919135?term=NCT04919135&draw=2&rank=1 .


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Trombose , Humanos , Tromboplastina/genética , Tromboplastina/metabolismo , Células Cultivadas , Trombose/genética , Células-Tronco Mesenquimais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Anticoagulantes , Cordão Umbilical
13.
Ann Med Surg (Lond) ; 86(2): 850-855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333285

RESUMO

Background: The KRAS genotype status is strongly associated with a prothrombotic state in colorectal cancer, and hypercoagulability and cancer-related thrombosis are among the significant events leading to poor prognosis. However, this correlation has not been confirmed at the cellular level. This study aimed to assess the maximum platelet aggregation rate and thrombin expression induced by colorectal cancer cells under different KRAS genotypes. Materials and methods: Platelet aggregation rate assay and western blotting analysis were used to detect platelet aggregation and thrombin expression induced by four colorectal cancer cells with different KRAS genotypes, including RKO, HCT116, SW480, and SW620. FVIIa/tissue factor and thrombin inhibitors were added to explore changes in platelet aggregation rates induced by colorectal cancer cells and the association between KRAS genotype status and hypercoagulable state. Results: KRAS-mutant cells were more likely to increase maximal platelet aggregation, with RKO, HCT116, SW480, and SW620 inducing 34.7%, 55.4%, 44.4%, and 63.8% of platelet aggregation, respectively. The maximum platelet aggregation rate was higher in the metastatic rectal cancer tumour strain SW620 than in the primary rectal cancer strain SW480. RKO cells had lower thrombin expression than the other three cells. Furthermore, the addition of thrombin inhibitors caused a more significant decrease in the platelet aggregation rate in KRAS-mutant cell lines compared to KRAS wild-type cell lines. Conclusion: Compared to KRAS wild-type colorectal cancer cells, KRAS-mutant colorectal cancer cell lines were more likely to be hypercoagulable through the upregulation of thrombin expression, which was mainly achieved through the TF-thrombin pathway.

14.
Res Pract Thromb Haemost ; 8(1): 102325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38404939

RESUMO

Background: Tissue factor (TF) is the primary cellular initiator of the blood coagulation cascade. Increased levels of TF expression on circulating monocytes or on extracellular vesicles (EVs) are associated with thrombosis in a variety of diseases, including sepsis and COVID-19. Objectives: Here, we aimed to evaluate the ability of 4 commercial TF enzyme-linked immunosorbent assays (ELISAs) to measure mouse TF in cells and plasma. Methods: We used 4 commercial mouse TF ELISAs (SimpleStep, R&D Systems, MyBioSource [sandwich], and MyBioSource [competitive]). We used recombinant mouse TF (rmTF; 16-1000 pg/mL), cell lysates from a TF-expressing mouse pancreatic cancer cell line, and plasma and EVs isolated from plasma from mice injected with vehicle or bacterial lipopolysaccharide (LPS). Results: The 2 MyBioSource kits failed to detect rmTF or TF in cell lysates. The SimpleStep and R&D kits detected rmTF in buffer or spiked into plasma in a concentration-dependent manner. These kits also detected TF in cell lysates from a mouse pancreatic cancer cell line. A higher signal was observed with the SimpleStep kit compared to the R&D kit. However, the SimpleStep and R&D kits failed to detect TF in plasma or EVs from LPS-treated mice. Conclusion: Our results indicate that some commercial ELISAs can be used to measure mouse TF levels in cell lysates but they cannot detect TF in plasma or EVs from endotoxemic mice.

15.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397093

RESUMO

The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.


Assuntos
Vesículas Extracelulares , Hiperóxia , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Proteoma/metabolismo , Células Endoteliais/patologia , Tromboplastina/metabolismo , Pulmão/patologia , Hipóxia/metabolismo , Vesículas Extracelulares/metabolismo , Endotélio/patologia
16.
Biomolecules ; 14(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397467

RESUMO

Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.


Assuntos
Fibrinogênio , Trombose , Humanos , Fibrinogênio/metabolismo , Trombina/metabolismo , Coagulação Sanguínea , Plasma/metabolismo , Fibrina/química
17.
Microorganisms ; 12(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38399804

RESUMO

African swine fever (ASF) is an acute and severe disease transmitted among domestic pigs and wild boars. This disease is notorious for its high mortality rate and has caused great losses to the world's pig industry in the past few years. After infection, pigs can develop symptoms such as high fever, inflammation, and acute hemorrhage, finally leading to death. African swine fever virus (ASFV) is the causal agent of ASF; it is a large DNA virus with 150-200 genes. Elucidating the functions of each gene could provide insightful information for developing prevention and control methods. Herein, to investigate the function of I267L, porcine alveolar macrophages (PAMs) infected with an I267L-deleted ASFV strain (named ∆I267L) and wild-type ASFV for 18 h and 36 h were taken for transcriptome sequencing (RNA-seq). The most distinct different gene that appeared at both 18 hpi (hours post-infection) and 36 hpi was F3; it is the key link between inflammation and coagulation cascades. KEGG analysis (Kyoto encyclopedia of genes and genomes analysis) revealed the complement and coagulation cascades were also significantly affected at 18 hpi. Genes associated with the immune response were also highly enriched with the deletion of I267L. RNA-seq results were validated through RT-qPCR. Further experiments confirmed that ASFV infection could suppress the induction of F3 through TNF-α, while I267L deletion partially impaired this suppression. These results suggest that I267L is a pathogenicity-associated gene that modulates the hemorrhages of ASF by suppressing F3 expression. This study provides new insights into the molecular mechanisms of ASFV pathogenicity and potential targets for ASFV prevention and control.

18.
Res Pract Thromb Haemost ; 8(1): 102289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38292350

RESUMO

Background: Several studies have examined parameters of increased thrombogenicity in COVID-19, but studies examining their association with long-term outcome and potential effects of antiviral agents in hospitalized patients with COVID-19 are scarce. Objectives: To evaluate plasma levels of hemostatic proteins during hospitalization in relation to disease severity, treatment modalities, and persistent pulmonary pathology after 3 months. Methods: In 165 patients with COVID-19 recruited into the NOR-Solidarity trial (NCT04321616) and randomized to treatment with hydroxychloroquine, remdesivir, or standard of care, we analyzed plasma levels of hemostatic proteins during the first 10 days of hospitalization (n = 160) and at 3 months of follow-up (n = 100) by enzyme immunoassay. Results: Our main findings were as follows: (i) tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI) were increased in patients with severe disease (ie, the combined endpoint of respiratory failure [Po2-to-FiO2 ratio, <26.6 kPa] or need for treatment at an intensive care unit) during hospitalization. Compared to patients without severe disease, tPA levels were a median of 42% (P < .001), 29% (P = .002), and 36% (P = .015) higher at baseline, 3 to 5 days, and 7 to 10 days, respectively. For TFPI, median levels were 37% (P = .003), 25% (P < .001), and 10% (P = .13) higher in patients with severe disease at these time points, respectively. No changes in thrombin-antithrombin complex; alpha 2-antiplasmin; a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; or antithrombin were observed in relation to severe disease. (ii) Patients treated with remdesivir had lower levels of TFPI than those in patients treated with standard of care alone. (iii) TFPI levels during hospitalization, but not at 3 months of follow-up, were higher in those with persistent pathology on chest computed tomography imaging 3 months after hospital admission than in those without such pathology. No consistent changes in thrombin-antithrombin complex, alpha 2-antiplasmin, ADAMTS-13, tPA, or antithrombin were observed in relation to pulmonary pathology at 3 months of follow-up. Conclusion: TFPI and tPA are associated with severe disease in hospitalized patients with COVID-19. For TFPI, high levels measured during the first 10 days of hospitalization were also associated with persistent pulmonary pathology even 3 months after hospital admittance.

19.
J Gynecol Oncol ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178703

RESUMO

OBJECTIVE: The combination of cancer and hypercoagulable states is often called Trousseau syndrome. In particular, cerebral infarction caused by Trousseau syndrome is reported to have a poor prognosis. In gynecology, there are many reports of ovarian cancer and a few of uterine cancer. Since there has been no comprehensive report of Trousseau syndrome in cervical cancer, we aimed to summarize Trousseau syndrome in cervical cancer. METHODS: Cerebral infarction caused by cancer-related arterial thrombosis was defined as Trousseau syndrome. Patients with cervical cancer diagnosed at our hospital between January 2014 and December 2021 were retrospectively reviewed using the hospital's medical records. RESULTS: A total of 1,432 patients were included in the study. Trousseau syndrome occurred in 6 patients (0.4%). The mean age of patients with Trousseau syndrome was 63 years (range: 53-78 years). Of the 6 patients who developed Trousseau's syndrome, 4 patients had it before or during initial treatment, and 2 during recurrent/relapsed disease treatment. The 4 patients who developed the syndrome before or during initial treatment had advanced disease: 1 in stage IIIC and 3 in stage IVB. In all cases, the disease was associated with progressive distant metastasis. The median survival time from the onset of Trousseau syndrome was 1 month (range: 0-6 months). CONCLUSION: Cervical cancer causes Trousseau syndrome in cases of advanced disease with a short time between the onset of the syndrome and mortality.

20.
Thromb J ; 22(1): 12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233821

RESUMO

BACKGROUND: Tissue factor (TF) activity is stringently regulated through processes termed encryption. Post-translational modification of TF and its interactions with various protein and lipid moieties allows for a multi-step de-encryption of TF and procoagulant activation. Membrane-associated guanylate kinase-with inverted configuration (MAGI) proteins are known to regulate the localisation and activity of a number of proteins including cell-surface receptors. METHODS: The interaction of TF with MAGI1 protein was examined as a means of regulating TF activity. MDA-MB-231 cell line was used which express TF and MAGI1, and respond well to protease activated receptor (PAR)2 activation. Proximity ligation assay (PLA), co-immunoprecipitation and pull-down experiments were used to examine the interaction of TF with MAGI1-3 proteins and to investigate the influence of PAR2 activation. Furthermore, by cloning and expressing the PDZ domains from MAGI1, the TF-binding domain was identified. The ability of the recombinant PDZ domains to act as competitors for MAGI1, allowing the induction of TF procoagulant and signalling activity was then examined. RESULTS: PLA and fluorescence microscopic analysis indicated that TF predominantly associates with MAGI1 and less with MAGI2 and MAGI3 proteins. The interaction of TF with MAGI1 was also demonstrated by both co-immunoprecipitation of TF with MAGI1, and co-immunoprecipitation of MAGI1 with TF. Moreover, activation of PAR2 resulted in reduction in the association of these two proteins. Pull-down assays using TF-cytoplasmic domain peptides indicated that the phosphorylation of Ser253 within TF prevents its association with MAGI1. Additionally, the five HA-tagged PDZ domains of MAGI1 were overexpressed separately, and the putative TF-binding domain was identified as PDZ1 domain. Expression of this PDZ domain in cells significantly augmented the TF activity measured both as thrombin-generation and also TF-mediated proliferative signalling. CONCLUSIONS: Our data indicate a stabilising interaction between TF and the PDZ-1 domain of MAGI1 and demonstrate that the activation of PAR2 disrupts this interaction. The release of TF from MAGI1 appears to be an initial step in TF de-encryption, associated with increased TF-mediated procoagulant and signalling activities. This mechanism is also likely to lead to further interactions and modifications leading to further enhancement of procoagulant activity, or the release of TF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...